Lp inequalities for polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some compact generalization of inequalities for polynomials with prescribed zeros

‎Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial‎ ‎of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$‎. ‎In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$‎, ‎$k^2 leq rRleq R^2$ and for $Rleq r leq k$‎. ‎Our results refine and generalize certain well-known polynomial inequalities‎.

متن کامل

Some Inequalities for Polynomials

Let pn(z) be a polynomial of degree n. Given that pn(z) has a zero on the circle \z\ = p(0 < p < oo) we estimate maxi , Ä>1 |/>„(z)| in terms of maxi:i , |/>„(z)|. We also consider some other related problems. It is well known (see [8, p. 346], or [6, vol. 1, p. 137, Problem III 269]) that if pn(z) = 2yt=oaAz/c 's a polynomial of degree « such that |p„(z)| â M for |z| Si 1, then at a point z ou...

متن کامل

MARKOV- AND BERNSTEIN-TYPE INEQUALITIES FOR MÜNTZ POLYNOMIALS AND EXPONENTIAL SUMS IN Lp

The principal result of this paper is the following Markov-type inequality for Müntz polynomials. Theorem (Newman’s Inequality in Lp[a, b] for [a, b] ⊂ (0,∞)). Let Λ := (λj) ∞ j=0 be an increasing sequence of nonnegative real numbers. Suppose λ0 = 0 and there exists a δ > 0 so that λj ≥ δj for each j. Suppose 0 < a < b and 1 ≤ p ≤ ∞. Then there exists a constant c(a, b, δ) depending only on a, ...

متن کامل

Markov and Bernstein Inequalities in Lp for Some Weighted Algebraic and Trigonometric Polynomials

Let Qm,n (with m≤ n) denote the space of polynomials of degree 2m or less on (−∞,∞), weighted by (1 + x2)−n. The elements Qm,n are thus rational functions with denominator (1 + x2)m and numerator of degree at most 2m (if m = n, we can write, more briefly, Qn for Qn,n). The spaces Qm,n form a nested sequence as n increases and r = n−m is held to some given value of weighted polynomial spaces, wi...

متن کامل

Inequalities for Lorentz polynomials

We prove a few interesting inequalities for Lorentz polynomials. A highlight of this paper states that the Markov-type inequality max x∈[−1,1] |f (x)| ≤ n max x∈[−1,1] |f(x)| holds for all polynomials f of degree at most n with real coefficients for which f ′ has all its zeros outside the open unit disk. Equality holds only for f(x) := c((1± x) − 2n−1) with a constant 0 6= c ∈ R. This should be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1988

ISSN: 0021-9045

DOI: 10.1016/0021-9045(88)90073-1